
Solving Linear Equations
with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Linear Equations
• NumPy
• NumPy.linalg
• Least Square Method

Contents

• Python can be used to solve a large amount of
linear equations using built-in functions

• Typically, you will use the NumPy library

Linear Equations in Python

• The Python Standard Library consists basic Math
functions, for more advanced Math functions, you
typically want to use the NumPy Library

• If you don’t have Python yet and want the
simplest way to get started, you can use the
Anaconda Distribution - it includes Python,
NumPy, and other commonly used packages for
scientific computing and data science.

• Or use “pip install numpy“ https://numpy.org

NumPy

https://numpy.org/

Linear Equations

𝐴𝑥 = 𝑏

𝑥 = 𝐴!"𝑏

Solution:

(assuming 𝐴!" is possible)

𝑎!!𝑥! + 𝑎!"𝑥" + 𝑎!#𝑥# +⋯ = 𝑏!
𝑎"!𝑥! + 𝑎"!𝑥" + 𝑎"#𝑥# +⋯ = 𝑏"

⋯

Given the following linear equations:

These equations can be set on the following general form:

Where A is a matrix, x is a vector with the unknowns and b
is a vector of constants

𝐴 =
𝑎"" ⋯ 𝑎"#
⋮ ⋱ ⋮
𝑎$" ⋯ 𝑎$#

𝑥 =

𝑥"
𝑥%
⋮
𝑥$

𝑏 =

𝑏"
𝑏%
⋮
𝑏$

Example
𝑥" + 2𝑥% = 5
3𝑥" + 4𝑥% = 6

Given the following linear equations:

𝑥" = 5 − 2𝑥%

3(5 − 2𝑥%) + 4𝑥% = 6

15 − 6𝑥% + 4𝑥% = 6

15 − 2𝑥% = 6

15 − 6 = 2𝑥%
2𝑥% = 9

𝑥% =
9
2 = 4.5

𝑥" = 5 − 9 = −4

𝑥" = −4
𝑥% = 4.5

Let's solve these equations manually

Final solution:

From eq(1) we get:

We put this in eq(2):

This gives:

Example
Given the following linear equations:

𝑥' + 2𝑥(= 5
3𝑥' + 4𝑥(= 6

This gives:

𝐴𝑥 = 𝑏
We want to put the equations on the following general form:

𝐴 = 1 2
3 4 𝑏 = 5

6 𝑥 =
𝑥!
𝑥"

𝑥 = 𝐴$!𝑏

The solution is given by:

Example - Python
Python code:

import numpy as np
import numpy.linalg as la

A = np.array([[1, 2],
[3, 4]])

b = np.array([[5],
[6]])

Ainv = la.inv(A)

x = Ainv.dot(b)

print(x)

This gives the following solution:
[[-4.]
[4.5]]

This means:
𝑥" = −4
𝑥% = 4.5

Which is the same as the solution we
got from our manual calculations

Note! The A matrix must be square and of full-
rank, i.e. the inverse matrix needs to exists.

Example – Python (Alt2)

Python code:
import numpy as np

A = np.array([[1, 2],
[3, 4]])

b = np.array([[5],
[6]])

x = np.linalg.solve(A, b)

print(x)

This gives the following solution:
[[-4.]
[4.5]] This means:

𝑥" = −4
𝑥% = 4.5

Which is the same as the solutions we
got from the other methods

x = np.linalg.solve(A, b)

We can also use the linalg.solve()function

Note! The A matrix must be square and of full-
rank, i.e. the inverse matrix needs to exists.

Non-Quadratic Example
Given the following linear equations:

𝑥" + 2𝑥% = 5
3𝑥" + 4𝑥% = 6
7𝑥" + 8𝑥% = 9

This gives:

𝐴𝑥 = 𝑏

We want to put the equations on the following general form:

𝐴 =
1 2
3 4
7 8

𝑏 =
5
6
9

𝑥 =
𝑥"
𝑥%

Note! The A matrix is not square, i.e. the
inverse matrix does not to exists!

We have 3 equations and 2 unknows (𝑥", 𝑥%)

Non-Quadratic Example
Given the following linear equations:

𝑥" + 2𝑥% = 5
3𝑥" + 4𝑥% = 6
7𝑥" + 8𝑥% = 9

import numpy as np

A = np.array([[1, 2],
[3, 4],
[7, 8]])

b = np.array([[5],
[6],
[9]])

x = np.linalg.solve(A, b)

print(x)

The Python code examples gives the following
error:
LinAlgError: Last 2 dimensions of the array
must be square

Non-Quadratic Example - Python

The previous Python code examples gives the following error:
LinAlgError: Last 2 dimensions of the array must be square

This is because the A matrix is not square, i.e. the inverse matrix does not to exists!

In many cases we cannot find the inverse matrix, e.g., when the matrix is not quadratic.
Finding the inverse matrix for large matrices is also time-consuming.

The numpy.linalg module has different functions that can handle this.

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

Python Example – Least Square
Python code:

import numpy as np

A = np.array([[1, 2],
[3, 4],
[7, 8]])

b = np.array([[5],
[6],
[9]])

x = np.linalg.lstsq(A, b, rcond=None)[0]

print(x)

The results becomes:
[[-3.5]
[4.17857143]]

Least Square Method

𝐴𝑥 = 𝑏

𝑥!" = 𝐴#𝐴 $%𝐴#𝑏

Given:

The Least Square Method is given by:

The Least Square Method works for Non-Quadratic matrices as well.

The Least Square fit

Data Points

Least Square Method - Python
import numpy as np

A = np.array([[1, 2],
[3, 4],
[7, 8]])

b = np.array([[5],
[6],
[9]])

x = np.linalg.lstsq(A, b, rcond=None)[0]
print(x)

x_ls = np.linalg.inv(A.transpose() * np.mat(A)) * A.transpose() * b
print(x_ls)

Implementing Least Square Method from scratch:

Compare built-in LSM and LMS from scratch

Comparing Different Methods
Given the following: import numpy as np

A = np.array([[4, 3, 2],
[-2, 2, 3],
[3, -5, 2]])

b = np.array([[25],
[-10],
[-4]])

x_alt1 = np.linalg.inv(A).dot(b)
print(x_alt1)

x_alt2 = np.linalg.solve(A, b)
print(x_alt2)

x_alt3 = np.linalg.lstsq(A, b, rcond=None)[0]
print(x_alt3)

x_alt4 = np.linalg.inv(A.transpose() * np.mat(A)) * A.transpose() * b
print(x_alt4)

All 4 methods gives:
[[5.]
[3.]
[-2.]]

Meaning:
𝑥 = 5, 𝑦 = 3, 𝑧 = −2

4𝑥 + 3𝑦 + 2𝑧 = 25
−2𝑥 + 2𝑦 + 3𝑧 = −10
3𝑥 − 5𝑦 + 2𝑧 = −4

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

